A Brief Introduction to Particle Physics

刘纯

ITP, Beijing

Special Relativity + Quantum Mechanics

Quantum Field Theory (QED)

Fields describe "elementary" particles

Maxwell equation for photon field

Dirac equation for electron fields

•••••

Quantization of fields -- single particle

Anti-particles predicted

Divergences renormalization

Feynmann, Schwinger, 朝永振一郎

Interactions

- 0. Gravitation
- 1. EM
- 2. Strong interaction

nuclei

3. Weak interaction

decays:

neutron --> proton + e + neutrino

Elementary particles:

photon, e, µ, , neutrinos, proton, neutron, pion, kaon,

Weak Interaction

4 fermions -- Fermi

(- puzzle) Parity violation -- 李政道、杨振宁

Strong Interaction

pion exchange

proton, neutron, pion, kaon

SU(3) flavor symmetry -- Gell-mann ...

Quarks -- Gell-mann & Zweig (64)

u, d, s, ...

层子模型 (65)

Principle of interactions

杨振宁-Mills (54) -- Gauge symmetry

non-Abelian gauge theory

(EM: U(1) Abelian)

Schwinger & Glashow (late 50's, 61):

EM + weak interaction unification

-- not fully realistic

Spontaneous symmetry breaking

Superconductivity (Anderson), Nambu,

Higgs, Englert, Brout (Nobel 2013)

Weak Interaction (cont'd)

Weinberg + Salam = Glashow + Higgs

unify weak interaction and EM into a gauge theory

at 100 GeV

Strong Interaction (cont'd)

Dynamics of quarks?

no free quarks observed: e = 1/3, 2/3

Non-Abelian gauge theory!

quark/gluon confinement

Standard Model

QCD + electro-weak unification

 $SU(3) \times SU(2) \times U(1)$

leptons, quarks, photon, gluon, W, Z

--perfect experimentally up to now

What is next?

Grand Unification

 $SU(3) \times SU(2) \times U(1)$ SU(5)

both theoretically and experimentally

problem: Why 100 GeV scale?

answer: Supersymmetry

breaks at 1000 GeV

Other ideas

Higgs composite

Extra dimensions

• • • • •

LHC experiment will test SUSY and them

Dark Matter

Astro-physics

Gravity

Weakly Interacting Massive Particles

1000 GeV with weak interaction

Gravity

Special relativity and Law of universal gravitation?

(new concept)

General Relativity

Cosmology:

Hubble observation: Expansion of the Universe

BBN successful (2 sec.- 3 min.)

problem: flatness

Inflation:

-3

A short (10 sec) exponential expansion

What is the inflaton?

Experiments: COBE, WMAP

Quantum gravity

General Relativity + Quantum Mechanics

(new)

String Theory

Loop gravity

N=8 supergravity

???

Cosmological Constant (dark energy)

$$(10^{-4} \text{ eV}^4)$$
 10^{108} eV

Future Experiments

LHC 大亚湾中微子 FERMI/GLAST PLANCK 羊八井宇宙线 北京谱仪 兰州HIRFL-CSR

• • • • •

ILC, ???

Problems and Comments

```
Higgs, SUSY, or anything new at 1000 GeV?
      LHC will find a 145 GeV Higgs, nothing else.
Dark matter ?
      maybe axion
Quark/gluon confinement?
      basically understood, difficult
Inflation model?
      m²
Baryon asymmetry?
      CP violation at high energy & lepton number violation
Cosmological constant?
      just so! (Don't make more problems, please.)
Fermion masses?
      who really cares?
```